Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.980
Filtrar
1.
Sci Signal ; 17(830): eade4335, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564492

RESUMO

Serum ferritin concentrations increase during hepatic inflammation and correlate with the severity of chronic liver disease. Here, we report a molecular mechanism whereby the heavy subunit of ferritin (FTH) contributes to hepatic inflammation. We found that FTH induced activation of the NLRP3 inflammasome and secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) in primary rat hepatic stellate cells (HSCs) through intercellular adhesion molecule-1 (ICAM-1). FTH-ICAM-1 stimulated the expression of Il1b, NLRP3 inflammasome activation, and the processing and secretion of IL-1ß in a manner that depended on plasma membrane remodeling, clathrin-mediated endocytosis, and lysosomal destabilization. FTH-ICAM-1 signaling at early endosomes stimulated Il1b expression, implying that this endosomal signaling primed inflammasome activation in HSCs. In contrast, lysosomal destabilization was required for FTH-induced IL-1ß secretion, suggesting that lysosomal damage activated inflammasomes. FTH induced IL-1ß production in liver slices from wild-type mice but not in those from Icam1-/- or Nlrp3-/- mice. Thus, FTH signals through its receptor ICAM-1 on HSCs to activate the NLRP3 inflammasome. We speculate that this pathway contributes to hepatic inflammation, a key process that stimulates hepatic fibrogenesis associated with chronic liver disease.


Assuntos
Inflamassomos , Hepatopatias , Ratos , Camundongos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Células Estreladas do Fígado/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Interleucina-1beta/metabolismo , Inflamação/genética , Inflamação/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1344971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501098

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has a high global prevalence and affects approximately one-third of adults, owing to high-fat dietary habits and a sedentary lifestyle. The role of hypoxia-inducible factor 2α (HIF-2α) in NAFLD progression remains unknown. This study aimed to investigate the effects of chronic hypoxia on NAFLD progression by examining the role of hypoxia-inducible factor 2α (HIF-2α) activation and that of hepatic stellate cell (HSC)-derived myofibroblasts through glutaminolysis. We hypothesised that hypoxia exacerbates NAFLD by promoting HIF-2α upregulation and inhibiting phosphorylated yes-associated protein (YAP), and that increasing YAP expression enhances HSC-derived myofibroblasts. We studied patients with NAFLD living at high altitudes, as well as animal models and cultured cells. The results revealed significant increases in HSC-derived myofibroblasts and collagen accumulation caused by HIF-2α and YAP upregulation, both in patients and in a mouse model for hypoxia and NAFLD. HIF-2α and HIF-2α-dependent YAP downregulation reduced HSC activation and myofibroblast levels in persistent chronic hypoxia. Furthermore, hypoxia-induced HIF-2α upregulation promoted YAP and inhibited YAP phosphorylation, leading to glutaminase 1 (GLS1), SLC38A1, α-SMA, and Collagen-1 overexpression. Additionally, hypoxia restored mitochondrial adenosine triphosphate production and reactive oxygen species (ROS) overproduction. Thus, chronic hypoxia-induced HIF-2α activation enhances fibrosis and NAFLD progression by restoring mitochondrial ROS production and glutaminase-1-induced glutaminolysis, which is mediated through the inhibition of YAP phosphorylation and increased YAP nuclear translocation. In summary, HIF-2α plays a pivotal role in NAFLD progression during chronic hypoxia.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Animais , Humanos , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Colágeno Tipo I/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Células Estreladas do Fígado/metabolismo , Hipóxia/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Sinalização YAP
3.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 183-188, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430023

RESUMO

This study aimed to elucidate the effect of mitochondria-targeted reactive oxygen species (ROS) blockor SS-31 on hepatic stellate cells (HSC) activation during liver fibrosis. TGF-ß1 was employed to induce HSC activation, while MitoSOX Red was utilized to assess the presence of mitochondrial ROS. The mitochondrial membrane potential (MMP) was measured using the JC-1 probe, and the ATP level was determined using a specific kit. The proliferation of HSCs was assessed using CCK-8 and colony formation assays, whereas flow cytometry was employed to detect HSC apoptosis. Fibrotic markers (COL1A1 and α-SMA) and NLRP3 inflammasome components (NLRP3, caspase-1, and ASC) were analyzed via Western blotting. Liver fibrosis was induced in mice using CCl4, and subsequently, histopathological changes were observed through HE staining and Masson staining. In TGF-ß1-activated HSCs, mitochondrial ROS expression increased, MMP and ATP content decreased, indicating mitochondrial damage. After TGF-ß1 induction, HSC proliferation increased, apoptosis decreased, and COL1A1, α-SMA, and NLRP3 inflammasome protein expression increased. After SS-31 treatment, mitochondrial ROS expression decreased, MMP recovered, ATP level increased, HSC proliferation decreased, apoptosis increased, and the expressions of COL1A1, α-SMA, and NLRP3 inflammasome decreased. NLRP3 blockor MCC950 treatment blocked HSC activation. CCL4-induced liver fibrosis mice had inflammatory cell infiltration and significant collagen fiber deposition in the liver. After SS-31 treatment, liver inflammation and collagen deposition were significantly reduced. SS-31, as a mitochondria-targeted ROS blockor, can block HSC activation by regulating the NLRP3 inflammasome, thereby alleviating liver fibrosis.


Assuntos
Células Estreladas do Fígado , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Colágeno/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
J Integr Med ; 22(2): 188-198, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38472011

RESUMO

OBJECTIVE: This study explores the mechanism of action of Danhongqing formula (DHQ), a compound-based Chinese medicine formula, in the treatment of cholestatic liver fibrosis. METHODS: In vivo experiments were conducted using 8-week-old multidrug resistance protein 2 knockout (Mdr2-/-) mice as an animal model of cholestatic liver fibrosis. DHQ was administered orally for 8 weeks, and its impact on cholestatic liver fibrosis was evaluated by assessing liver function, liver histopathology, and the expression of liver fibrosis-related proteins. Real-time polymerase chain reaction, Western blot, immunohistochemistry and other methods were used to observe the effects of DHQ on long non-coding RNA H19 (H19) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in the liver tissue of Mdr2-/- mice. In addition, cholangiocytes and hepatic stellate cells (HSCs) were cultured in vitro to measure the effects of bile acids on cholangiocyte injury and H19 expression. Cholangiocytes overexpressing H19 were constructed, and a conditioned medium containing H19 was collected to measure its effects on STAT3 protein expression and cell activation. The intervention effect of DHQ on these processes was also investigated. HSCs overexpressing H19 were constructed to measure the impact of H19 on cell activation and assess the intervention effect of DHQ. RESULTS: DHQ alleviated liver injury, ductular reaction, and fibrosis in Mdr2-/- mice, and inhibited H19 expression, STAT3 expression and STAT3 phosphorylation. This formula also reduced hydrophobic bile acid-induced cholangiocyte injury and the upregulation of H19, inhibited the activation of HSCs induced by cholangiocyte-derived conditioned medium, and decreased the expression of activation markers in HSCs. The overexpression of H19 in a human HSC line confirmed that H19 promoted STAT3 phosphorylation and HSC activation, and DHQ was able to successfully inhibit these effects. CONCLUSION: DHQ effectively alleviated spontaneous cholestatic liver fibrosis in Mdr2-/- mice by inhibiting H19 upregulation in cholangiocytes and preventing the inhibition of STAT3 phosphorylation in HSC, thereby suppressing cell activation. Please cite this article as: Li M, Zhou Y, Zhu H, Xu LM, Ping J. Danhongqing formula alleviates cholestatic liver fibrosis by downregulating long non-coding RNA H19 derived from cholangiocytes and inhibiting hepatic stellate cell activation. J Integr Med. 2024; 22(2): 188-198.


Assuntos
Colestase , RNA Longo não Codificante , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Meios de Cultivo Condicionados/metabolismo , Camundongos Knockout , Colestase/tratamento farmacológico , Colestase/genética , Colestase/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo
5.
Iran Biomed J ; 28(1): 31-7, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38468370

RESUMO

Background: Liver fibrosis, associated with hepatic stellate cells (HSCs), occurs when a healthy liver sustains damage, thereby impairing its function. NADPH oxidases (NOXs), specifically isoforms 1, 2, and 4, play a role in reactive oxygen species (ROS) production during hepatic injuries, resulting in fibrosis. Curcumin has shown strong potential in mitigating liver fibrosis. Our research aimed to investigate the effects of curcumin on lowering NOX and ROS levels. This compound was also studied for its effects on NOXs, ROS concentrations through the inhibition of Smad3 phosphorylation in transforming growth factor beta (TGF-ß)-activated human HSCs. Methods: MTT assay investigated the cytotoxic effects of curcumin on HSCs. The cells were activated by exposure to TGF-ß (2 ng/mL) for 24 hours. After activating, the cells were treated with curcumin at 25-150 µM concentrations. After administering curcumin to the cells, we employed RT-PCR and Western blot techniques to evaluate the related gene and protein expression levels. This evaluation was primarily focused on the mRNA expression levels of NOX1, NOX2, NOX4 and phosphorylated Smad3C. Results: The mRNA expression level of aforesaid NOXs as well as α-smooth muscle actin (α-SMA), collagen1-α, and ROS levels were significantly reduced following 100 µM curcumin treatment. Furthermore, curcumin significantly decreased the p-Smad3C protein level in TGF-ß-activated cells, with fold changes of 3 and 2 observed at 75 and 100 µM, respectively. Conclusion: Curcumin decreased the levels of ROS and NOX, as well as the expression of α-SMA and collagen1-α. The primary mechanism for this reduction could be linked to the level of p-Smad3C. Hence, curcumin could serve as an effective therapeutic agent for liver fibrosis.


Assuntos
Curcumina , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Células Estreladas do Fígado/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Expressão Gênica , RNA Mensageiro/metabolismo
6.
Exp Cell Res ; 437(1): 113992, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492634

RESUMO

BACKGROUND: Hepatic fibrosis, a common pathological process that occurs in end-stage liver diseases, is a serious public health problem and lacks effective therapy. Notoginsenoside R1 (NR1) is a small molecule derived from the traditional Chinese medicine Sanqi, exhibiting great potential in treating diverse metabolie disorders. Here we aimed to enquired the role of NR1 in liver fibrosis and its underlying mechanism in hepatoprotective effects. METHODS: We investigated the anti-fibrosis effect of NR1 using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated JS-1, LX-2 cells and primary hepatic stellate cell. Cell samples treated by NR1 were collected for transcriptomic profiling analysis. PPAR-γ mediated TGF-ß1/Smads signaling was examined using PPAR-γ selective inhibitors and agonists intervention, immunofluorescence staining and western blot analysis. Additionally, we designed and studied the binding of NR1 to PPAR-γ using molecular docking. RESULTS: NR1 obviously attenuated liver histological damage, reduced serum ALT, AST levels, and decreased liver fibrogenesis markers in mouse mode. Mechanistically, NR1 elevated PPAR-γ and decreased TGF-ß1, p-Smad2/3 expression. The TGF-ß1/Smads signaling pathway and fibrotic phenotype were altered in JS-1 cells after using PPAR-γ selective inhibitors and agonists respectively, confirming PPAR-γ played a pivotal protection role inNR1 treating liver fibrosis. Further molecular docking indicated NR1 had a strong binding tendency to PPAR-γ with minimum free energy. CONCLUSIONS: NR1 attenuates hepatic stellate cell activation and hepatic fibrosis by elevating PPAR-γ to inhibit TGF-ß1/Smads signalling. NR1 may be a potential candidate compound for reliving liver fibrosis.


Assuntos
Ginsenosídeos , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibrose , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
7.
World J Gastroenterol ; 30(6): 607-609, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463024

RESUMO

The present letter to the editor is related to the study titled 'Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells'. Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.


Assuntos
Peptidil Dipeptidase A , Sistema Renina-Angiotensina , Animais , Camundongos , Angiotensina II/metabolismo , Enzima de Conversão de Angiotensina 2 , Fibrose , Células Estreladas do Fígado/metabolismo , Cirrose Hepática , Peptidil Dipeptidase A/metabolismo
8.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473980

RESUMO

Liver fibrosis poses a significant global health risk due to its association with hepatocellular carcinoma (HCC) and the lack of effective treatments. Thus, the need to discover additional novel therapeutic targets to attenuate liver diseases is urgent. Leucine-rich repeat containing 1 (LRRC1) reportedly promotes HCC development. Previously, we found that LRRC1 was significantly upregulated in rat fibrotic liver according to the transcriptome sequencing data. Herein, in the current work, we aimed to explore the role of LRRC1 in liver fibrosis and the underlying mechanisms involved. LRRC1 expression was positively correlated with liver fibrosis severity and significantly elevated in both human and murine fibrotic liver tissues. LRRC1 knockdown or overexpression inhibited or enhanced the proliferation, migration, and expression of fibrogenic genes in the human hepatic stellate cell line LX-2. More importantly, LRRC1 inhibition in vivo significantly alleviated CCl4-induced liver fibrosis by reducing collagen accumulation and hepatic stellate cells' (HSCs) activation in mice. Mechanistically, LRRC1 promoted HSC activation and liver fibrogenesis by preventing the ubiquitin-mediated degradation of phosphorylated mothers against decapentaplegic homolog (Smad) 2/3 (p-Smad2/3), thereby activating the TGF-ß1/Smad pathway. Collectively, these results clarify a novel role for LRRC1 as a regulator of liver fibrosis and indicate that LRRC1 is a promising target for antifibrotic therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Humanos , Camundongos , Animais , Células Estreladas do Fígado/metabolismo , Leucina/metabolismo , Regulação para Cima , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(2): 201-209, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38501404

RESUMO

OBJECTIVE: To investigate the protective effect of NDUFA13 protein against acute liver injury and liver fibrosis in mice and explore the possible mechanisms. METHODS: BALB/C mice (7 to 8 weeks old) were divided into normal group, CCl4 group, CCl4+AAV-NC group and CCl4+AAV-NDU13 group (n=18). Mouse models of liver fibrosis were established by intraperitoneal injection of CCl4 twice a week for 3, 5 or 7 weeks, and the recombinant virus AAV8-TBG-NC or AAV8-TBG-NDUFA13 was injected via the tail vein 7-10 days prior to CCl4 injection. After the treatments, pathological changes in the liver of the mice were observed using HE and Masson staining. Hepatic expression levels of NDUFA13 and α-SMA were detected with Western blotting, and the coexpression of NDUFA13 and NLRP3, TNF-α and IL-1ß, and α-SMA and collagen Ⅲ was analyzed with immunofluorescence assay. RESULTS: HE and Masson staining showed deranged liver architecture, necrotic hepatocytes and obvious inflammatory infiltration and collagen fiber deposition in mice with CCl4 injection (P < 0.001). NDUFA13 expression markedly decreased in CCl4-treated mice (P < 0.001), while a significant reduction in inflammatory aggregation and fibrosis was observed in mice with AAV-mediated NDUFA13 overexpression (P < 0.001). In CCl4+AAV-NDU13 group, immunofluorescence assay revealed markedly weakened activation of NLRP3 inflammasomes (P < 0.001), significantly decreased TNF-α and IL-1ß secretion (P < 0.001), and inhibited hepatic stellate cell activation (P < 0.05) and collagen formation in the liver (P < 0.001). CONCLUSION: Mitochondrial NDUFA13 overexpression in hepatocytes protects against CCl4- induced liver fibrosis in mice by inhibiting activation of NLRP3 signaling.


Assuntos
Dependovirus , Fator de Necrose Tumoral alfa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos BALB C , Fígado/metabolismo , Cirrose Hepática , Hepatócitos , Colágeno/metabolismo , Células Estreladas do Fígado/metabolismo , Tetracloreto de Carbono/efeitos adversos
10.
Parasit Vectors ; 17(1): 151, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519993

RESUMO

ABSTRACT: BACKGROUND: Clonorchis sinensis infection is one of the risk factors that provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis and even cholangiocarcinoma (CCA). Disrupted or aberrant intercellular communication among liver-constituting cells leads to pathological states that cause various hepatic diseases. This study was designed to investigate the pathological changes caused by C. sinensis excretory-secretory products (ESPs) in non-cancerous human cell lines (cholangiocytes [H69 cell line] and human hepatic stellate cells [LX2 cell line]) and their intercellular crosstalk, as well the pathological changes in infected mouse liver tissues. METHODS: The cells were treated with ESPs, following which transforming growth factor beta 1 (TGF-ß1) and interleukin-6 (IL-6) secretion levels and epithelial-mesenchymal transition (EMT)- and fibrosis-related protein expression were measured. The ESP-mediated cellular motility (migration/invasion) between two cells was assessed using the Transwell and three-dimensional microfluidic assay models. The livers of C. sinensis-infected mice were stained using EMT and fibrotic marker proteins. RESULTS: Treatment of cells with ESPs increased TGF-ß1 and IL-6 secretion and the expression of EMT- and fibrosis-related proteins. The ESP-mediated mutual cell interaction further affected the cytokine secretion and protein expression levels and promoted cellular motility. N-cadherin overexpression and collagen fiber deposition were observed in the livers of C. sinensis-infected mice. CONCLUSIONS: These findings suggest that EMT and biliary fibrosis occur through intercellular communication between cholangiocytes and hepatic stellate cells during C. sinensis infection, promoting malignant transformation and advanced hepatobiliary abnormalities.


Assuntos
Neoplasias dos Ductos Biliares , Clonorquíase , Clonorchis sinensis , Humanos , Animais , Camundongos , Clonorquíase/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Clonorchis sinensis/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Células Estreladas do Fígado/metabolismo , Fibrose , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Transição Epitelial-Mesenquimal
11.
J Cell Mol Med ; 28(8): e18234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520214

RESUMO

Liver fibrosis is characterized by the activation and transformation of hepatic stellate cells (HSCs) induced by various injury factors. The degree of liver fibrosis can be significantly improved, but persistent injury factors present a significant therapeutic challenge. Hepatocytes are the most important parenchymal cell type in the liver. In this study, we explored the molecular mechanisms by which damaged liver cells activate HSCs through extracellular vesicles. We established a coculture model of LO2 and LX2 and validated its exosomal transmission activity. Subsequently, differentially expressed long noncoding RNAs (lncRNAs) were screened through RNA sequencing and their mechanisms of action as competing endogenous RNAs (ceRNAs) further confirmed using biological methods, such as FISH and luciferase assays. Damaged liver cells induced activation of LX2 and upregulation of liver fibrosis-related markers. Exosomes extracted and identified from the supernatant fraction contained differentially expressed lncRNA cytoskeleton regulator RNA (CYTOR) that competed with microRNA-125 (miR-125) for binding to glial cell line-derived neurotrophic factor (GDNF) in HSCs, in turn, promoting LX2 activation. MiR-125 could target and regulate both CYTOR and GDNF and vice versa, as verified using the luciferase assay. In an in vivo model, damaged liver extracellular vesicles induced the formation of liver fibrosis. Notably, downregulation of CYTOR within extracellular vesicles effectively inhibited liver fibrosis. The lncRNA CYTOR in exosomes of damaged liver cells is upregulated and modulates the expression of downstream GDNF through activity as a ceRNA, providing an effective mechanism for activation of HSCs.


Assuntos
Exossomos , MicroRNAs , RNA Longo não Codificante , Humanos , Células Estreladas do Fígado/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Luciferases/metabolismo
12.
Life Sci ; 344: 122547, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460810

RESUMO

Hepatic stellate cells (HSCs) play central roles in liver disease pathogenesis, spanning steatosis to cirrhosis and hepatocellular carcinoma. These cells, located in the liver's sinusoidal space of Disse, transition from a quiescent, vitamin A-rich state to an activated, myofibroblast-like phenotype in response to liver injury. This activation results from a complex interplay of cytokines, growth factors, and oxidative stress, leading to excessive collagen deposition and liver fibrosis, a hallmark of chronic liver diseases. Recently, HSCs have gained recognition for their dynamic, multifaceted roles in liver health and disease. Attention has shifted toward their involvement in various liver conditions, including acute liver injury, alcoholic and non-alcoholic fatty liver disease, and liver regeneration. This review aims to explore diverse functions of HSCs in these acute or chronic liver pathologies, with a focus on their roles beyond fibrogenesis. HSCs exhibit a wide range of actions, including lipid storage, immunomodulation, and interactions with other hepatic and extrahepatic cells, making them pivotal in the hepatic microenvironment. Understanding HSC involvement in the progression of liver diseases can offer novel insights into pathogenic mechanisms and guide targeted therapeutic strategies for various liver conditions.


Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Humanos , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Citocinas/metabolismo
13.
Front Biosci (Landmark Ed) ; 29(2): 62, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38420807

RESUMO

BACKGROUND: Mesenchymal cells, including hepatic stellate cells (HSCs), fibroblasts (FBs), myofibroblasts (MFBs), and vascular smooth muscle cells (VSMCs), are the main cells that affect liver fibrosis and play crucial roles in maintaining tissue homeostasis. The dynamic evolution of mesenchymal cells is very important but remains to be explored for researching the reversible mechanism of hepatic fibrosis and its evolution mechanism of hepatic fibrosis to cirrhosis. METHODS: Here, we analysed the transcriptomes of more than 50,000 human single cells from three cirrhotic and three healthy liver tissue samples and the mouse hepatic mesenchymal cells of two healthy and two fibrotic livers to reconstruct the evolutionary trajectory of hepatic mesenchymal cells from a healthy to a cirrhotic state, and a subsequent integrative analysis of bulk RNA sequencing (RNA-seq) data of HSCs from quiescent to active (using transforming growth factor ß1 (TGF-ß1) to stimulate LX-2) to inactive states. RESULTS: We identified core genes and transcription factors (TFs) involved in mesenchymal cell differentiation. In healthy human and mouse livers, the expression of NR1H4 and members of the ZEB families (ZEB1 and ZEB2) changed significantly with the differentiation of FB into HSC and VSMC. In cirrhotic human livers, VSMCs transformed into HSCs with downregulation of MYH11, ACTA2, and JUNB and upregulation of PDGFRB, RGS5, IGFBP5, CD36, A2M, SOX5, and MEF2C. Following HSCs differentiation into MFBs with the upregulation of COL1A1, TIMP1, and NR1H4, a small number of MFBs reverted to inactivated HSCs (iHSCs). The differentiation trajectory of mouse hepatic mesenchymal cells was similar to that in humans; however, the evolution trajectory and proportion of cell subpopulations that reverted from MFBs to iHSCs suggest that the mouse model may not accurately reflect disease progression and outcome in humans. CONCLUSIONS: Our analysis elucidates primary genes and TFs involved in mesenchymal cell differentiation during liver fibrosis using scRNA-seq data, and demonstrated the core genes and TFs in process of HSC activation to MFB and MFB reversal to iHSC using bulk RNA-seq data of human fibrosis induced by TGF-ß1. Furthermore, our findings suggest promising targets for the treatment of liver fibrosis and provide valuable insights into the molecular mechanisms underlying its onset and progression.


Assuntos
Análise da Expressão Gênica de Célula Única , Fatores de Transcrição , Camundongos , Animais , Humanos , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Tetracloreto de Carbono/efeitos adversos , Tetracloreto de Carbono/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo , Diferenciação Celular/genética , Células Estreladas do Fígado/metabolismo
14.
J Gastroenterol ; 59(3): 229-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310161

RESUMO

BACKGROUND: Liver fibrosis can progress to cirrhosis and hepatic carcinoma without treatment. CircDCBLD2 was found to be downregulated in liver fibrosis. However, the precise underlying mechanism requires further investigation. METHODS: qRT-PCR, Western blot, and immunohistochemistry assays were used to detect the related molecule levels. HE, Masson's trichrome, and Sirius Red staining were used to assess the pathological changes in mice's liver tissues. Flow cytometric analysis and commercial kit were used to assess the levels of lipid reactive oxygen species (ROS), malonaldehyde (MDA), glutathione (GSH), and iron. Cell viability was assessed by MTT. Immunoprecipitation was used to study the ubiquitination of PARK7. Mitophagy was determined by immunostaining and confocal imaging. RIP and Co-IP assays were used to assess the interactions of circDCBLD2/HuR, HuR/STUB1, and STUB1/PARK7. Fluorescence in situ hybridization and immunofluorescence staining were used to assess the co-localization of circDCBLD2 and HuR. RESULTS: CircDCBLD2 was downregulated, whereas PARK7 was upregulated in liver fibrosis. Ferroptosis activators increased circDCBLD2 while decreasing PARK7 in hepatic stellate cells (HSCs) and mice with liver fibrosis. CircDCBLD2 overexpression reduced cell viability and GSH, PARK7, and GPX4 expression in erastin-treated HSCs while increasing MDA and iron levels, whereas circDCBLD2 knockdown had the opposite effect. CircDCBLD2 overexpression increased STUB1-mediated PARK7 ubiquitination by promoting HuR-STUB1 binding and thus increasing STUB1 mRNA stability. PARK7 overexpression or HuR knockdown reversed the effects of circDCBLD2 overexpression on HSC activation and ferroptosis. CircDCBLD2 reduced liver fibrosis in mice by inhibiting PARK7. CONCLUSION: CircDCBLD2 overexpression increased PARK7 ubiquitination degradation by upregulating STUB1 through its interaction with HuR, inhibiting HSC activation and promoting HSC ferroptosis, ultimately enhancing liver fibrosis.


Assuntos
Ferroptose , Neoplasias Hepáticas , Animais , Camundongos , Células Estreladas do Fígado/metabolismo , Hibridização in Situ Fluorescente , Ferro/metabolismo , Ferro/farmacologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Proteína Desglicase DJ-1/farmacologia , Ubiquitinação
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38368823

RESUMO

Liver fibrosis is the excessive accumulation of extracellular matrix proteins, primarily collagen, in response to liver injury caused by chronic liver diseases. HIV infection accelerates the progression of liver fibrosis in patients co-infected with HCV or HBV compared to those who are only mono-infected. The early event in the progression of liver fibrosis involves the activation of hepatic stellate cells (HSCs), which entails the loss of lipid droplets (LD) to fuel the production of extracellular matrix components crucial for liver tissue healing. Thus, we are examining the mechanism by which HIV stimulates the progression of liver fibrosis. HIV-R5 tropic infection was unable to induce the expression of TGF-ß, collagen deposition, α-smooth muscle actin (α-SMA), and cellular proliferation. However, this infection induced the secretion of the profibrogenic cytokine IL-6 and the loss of LD. This process involved the participation of peroxisome proliferator-activated receptor (PPAR)-α and an increase in lysosomal acid lipase (LAL), along with the involvement of Microtubule-associated protein 1 A/1B-light chain 3 (LC3), strongly suggesting that LD loss could occur through acid lipolysis. These phenomena were mimicked by the gp120 protein from the R5 tropic strain of HIV. Preincubation of HSCs with the CCR5 receptor antagonist, TAK-779, blocked gp120 activity. Additionally, experiments performed with pseudotyped-HIV revealed that HIV replication could also contribute to LD loss. These results demonstrate that the cross-talk between HSCs and HIV involves a series of interactions that help explain some of the mechanisms involved in the exacerbation of liver damage observed in co-infected individuals.


Assuntos
Infecções por HIV , Hepatopatias , Humanos , Colágeno/metabolismo , Células Estreladas do Fígado/metabolismo , Infecções por HIV/metabolismo , Gotículas Lipídicas/metabolismo , Cirrose Hepática/patologia , Hepatopatias/patologia , Proteína gp120 do Envelope de HIV
16.
Pathol Int ; 74(4): 197-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353379

RESUMO

Chronic hepatic diseases often involve fibrosis as a pivotal factor in their progression. This study investigates the regulatory mechanisms of Yin Yang 1 (YY1) in hepatic fibrosis. Our data reveal that YY1 binds to the prolyl hydroxylase domain 1 (PHD1) promoter. Rats treated with carbon tetrachloride (CCl4) display heightened fibrosis in liver tissues, accompanied by increased levels of YY1, PHD1, and the fibrosis marker alpha-smooth muscle actin (α-SMA). Elevated levels of YY1, PHD1, and α-SMA are observed in the liver tissues of CCl4-treated rats, primary hepatic stellate cells (HSCs) isolated from fibrotic liver tissues, and transforming growth factor beta-1 (TGF-ß1)-induced HSCs. The human HSC cell line LX-2, upon YY1 overexpression, exhibits enhanced TGF-ß1-induced activation, leading to increased expression of extracellular matrix (ECM)-related proteins and inflammatory cytokines. YY1 silencing produces the opposite effect. YY1 exerts a positive regulatory effect on the activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway and PHD1 expression. PHD1 silencing rescues the promotion of YY1 in cell activation, ECM-related protein expression, and inflammatory cytokine production in TGF-ß1-treated LX-2 cells. Overall, our findings propose a model wherein YY1 facilitates TGF-ß1-induced HSC activation, ECM-related protein expression, and inflammatory cytokine production by promoting PHD1 expression and activating the PI3K/AKT signaling pathway. This study positions YY1 as a promising therapeutic target for hepatic fibrosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta1 , Humanos , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/uso terapêutico , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Fosfatidilinositol 3-Quinases/uso terapêutico , Yin-Yang , Cirrose Hepática/metabolismo , Matriz Extracelular/metabolismo , Inflamação/metabolismo , Tetracloreto de Carbono
17.
EMBO Rep ; 25(3): 1055-1074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351372

RESUMO

Activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. However, the molecular basis for HSC activation remains poorly understood. Herein, we demonstrate that primary cilia are present on quiescent HSCs but exhibit a significant loss upon HSC activation which correlates with decreased levels of the ciliary protein intraflagellar transport 88 (IFT88). Ift88-knockout mice are more susceptible to chronic carbon tetrachloride-induced liver fibrosis. Mechanistic studies show that the X-linked inhibitor of apoptosis (XIAP) functions as an E3 ubiquitin ligase for IFT88. Transforming growth factor-ß (TGF-ß), a profibrotic factor, enhances XIAP-mediated ubiquitination of IFT88, promoting its proteasomal degradation. Blocking XIAP-mediated IFT88 degradation ablates TGF-ß-induced HSC activation and liver fibrosis. These findings reveal a previously unrecognized role for ciliary homeostasis in regulating HSC activation and identify the XIAP-IFT88 axis as a potential therapeutic target for liver fibrosis.


Assuntos
Cílios , Cirrose Hepática , Animais , Camundongos , Cílios/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fator de Crescimento Transformador beta/metabolismo
18.
BMC Gastroenterol ; 24(1): 84, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395762

RESUMO

BACKGROUND: The activation of hepatic stellate cells (HSCs) has been emphasized as a leading event of the pathogenesis of liver cirrhosis, while the exact mechanism of its activation is largely unknown. Furthermore, the novel non-invasive predictors of prognosis in cirrhotic patients warrant more exploration. miR-541 has been identified as a tumor suppressor in hepatocellular carcinoma and a regulator of fibrotic disease, such as lung fibrosis and renal fibrosis. However, its role in liver cirrhosis has not been reported. METHODS: Real-time PCR was used to detect miR-541 expression in the liver tissues and sera of liver cirrhosis patients and in the human LX-2. Gain- and loss-of-function assays were performed to evaluate the effects of miR-541 on the activation of LX-2. Bioinformatics analysis and a luciferase reporter assay were conducted to investigate the target gene of miR-541. RESULTS: miR-541 was downregulated in the tissues and sera of patients with liver cirrhosis, which was exacerbated by deteriorating disease severity. Importantly, the lower expression of miR-541 was associated with more episodes of complications including ascites and hepatic encephalopathy, a shorter overall lifespan, and decompensation-free survival. Moreover, multivariate Cox's regression analysis verified lower serum miR-541 as an independent risk factor for liver-related death in cirrhotic patients (HR = 0.394; 95% CI: 0.164-0.947; P = 0.037). miR-541 was also decreased in LX-2 cells activated by TGF-ß and the overexpression of miR-541 inhibited the proliferation, activation and hydroxyproline secretion of LX-2 cells. JAG2 is an important ligand of Notch signaling and was identified as a direct target gene of miR-541. The expression of JAG2 was upregulated in the liver tissues of cirrhotic patients and was inversely correlated with miR-541 levels. A rescue assay further confirmed that JAG2 was involved in the function of miR-541 when regulating LX-2 activation and Notch signaling. CONCLUSIONS: Dysregulation of miR-541/JAG2 axis might be a as a new mechanism of liver fibrosis, and miR-541 could serve as a novel non-invasive biomarker and therapeutic targets for liver cirrhosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , MicroRNAs , Humanos , Proliferação de Células/genética , Células Estreladas do Fígado/metabolismo , Proteína Jagged-2/metabolismo , Proteína Jagged-2/farmacologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico
19.
FASEB J ; 38(4): e23473, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334462

RESUMO

Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-ß, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.


Assuntos
Células Endoteliais , Análise da Expressão Gênica de Célula Única , Camundongos , Animais , Fígado , Envelhecimento/genética , Envelhecimento/metabolismo , Transdução de Sinais/fisiologia , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo
20.
Cells ; 13(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334674

RESUMO

Different cellular mechanisms influence steatotic liver disease (SLD) progression. The influence of different levels of steatogenic inputs has not been studied in hepatocytes and hepatic stellate cells (HSCs). METHODS: HepG2 hepatocytes and LX-2 HSCs were cultured in mild (MS) and severe (SS) steatogenic conditions. TGF-ß stimulation was also tested for HSCs in control (T) and steatogenic conditions (MS-T and SS-T). Steatosis was stained with Oil Red, and the proliferation was assayed via WST-8 reduction, apoptosis via flow cytometry, and senescence via SA-ß-galactosidase activity. RESULTS: Regarding hepatocytes, steatosis progressively increased; proliferation was lower in MS and SS; and the viability of both conditions significantly decreased at 72 h. Apoptosis increased in MS at 72 h, while it decreased in SS. Senescence increased in MS and diminished in SS. Regarding HSCs, the SS and SS-T groups showed no proliferation, and the viability was reduced in MS at 72 h and in SS and SS-T. The LX-2 cells showed increased apoptosis in SS and SS-T at 24 h, and in MS and MS-T at 72 h. Senescence decreased in MS, SS, and SS-T. CONCLUSIONS: Lipid overload induces differential effects depending on the cell type, the steatogenic input level, and the exposure time. Hepatocytes are resilient to mild steatosis but susceptible to high lipotoxicity. HSCs are sensitive to lipid overload, undergoing apoptosis and lowering senescence and proliferation. Collectively, these data may help explain the development of steatosis and fibrosis in SLD.


Assuntos
Fígado Gorduroso , Células Estreladas do Fígado , Humanos , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado Gorduroso/metabolismo , Proliferação de Células , Hiperplasia/metabolismo , Apoptose , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...